12,736 research outputs found

    Optical Weak Link between Two Spatially Separate Bose-Einstein Condensates

    Full text link
    Two spatially separate Bose-Einstein condensates were prepared in an optical double-well potential. A bidirectional coupling between the two condensates was established by two pairs of Bragg beams which continuously outcoupled atoms in opposite directions. The atomic currents induced by the optical coupling depend on the relative phase of the two condensates and on an additional controllable coupling phase. This was observed through symmetric and antisymmetric correlations between the two outcoupled atom fluxes. A Josephson optical coupling of two condensates in a ring geometry is proposed. The continuous outcoupling method was used to monitor slow relative motions of two elongated condensates and characterize the trapping potential.Comment: 4 pages, 5 figure

    Weibull-type limiting distribution for replicative systems

    Full text link
    The Weibull function is widely used to describe skew distributions observed in nature. However, the origin of this ubiquity is not always obvious to explain. In the present paper, we consider the well-known Galton-Watson branching process describing simple replicative systems. The shape of the resulting distribution, about which little has been known, is found essentially indistinguishable from the Weibull form in a wide range of the branching parameter; this can be seen from the exact series expansion for the cumulative distribution, which takes a universal form. We also find that the branching process can be mapped into a process of aggregation of clusters. In the branching and aggregation process, the number of events considered for branching and aggregation grows cumulatively in time, whereas, for the binomial distribution, an independent event occurs at each time with a given success probability.Comment: 6 pages and 5 figure

    Polarization Switching Dynamics Governed by Thermodynamic Nucleation Process in Ultrathin Ferroelectric Films

    Full text link
    A long standing problem of domain switching process - how domains nucleate - is examined in ultrathin ferroelectric films. We demonstrate that the large depolarization fields in ultrathin films could significantly lower the nucleation energy barrier (U*) to a level comparable to thermal energy (kBT), resulting in power-law like polarization decay behaviors. The "Landauer's paradox": U* is thermally insurmountable is not a critical issue in the polarization switching of ultrathin ferroelectric films. We empirically find a universal relation between the polarization decay behavior and U*/kBT.Comment: 5 pages, 4 figure

    Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr,Ti)O3 capacitors

    Full text link
    We investigated domain nucleation process in epitaxial Pb(Zr,Ti)O3 capacitors under a modified piezoresponse force microscope. We obtained domain evolution images during polarization switching process and observed that domain nucleation occurs at particular sites. This inhomogeneous nucleation process should play an important role in an early stage of switching and under a high electric field. We found that the number of nuclei is linearly proportional to log(switching time), suggesting a broad distribution of activation energies for nucleation. The nucleation sites for a positive bias differ from those for a negative bias, indicating that most nucleation sites are located at ferroelectric/electrode interfaces

    Three-loop HTL QCD thermodynamics

    Get PDF
    The hard-thermal-loop perturbation theory (HTLpt) framework is used to calculate the thermodynamic functions of a quark-gluon plasma to three-loop order. This is the highest order accessible by finite temperature perturbation theory applied to a non-Abelian gauge theory before the high-temperature infrared catastrophe. All ultraviolet divergences are eliminated by renormalization of the vacuum, the HTL mass parameters, and the strong coupling constant. After choosing a prescription for the mass parameters, the three-loop results for the pressure and trace anomaly are found to be in very good agreement with recent lattice data down to T∼2−3 TcT \sim 2-3\,T_c, which are temperatures accessible by current and forthcoming heavy-ion collision experiments.Comment: 27 pages, 11 figures; corresponds with published version in JHE

    Polarization Relaxation Induced by Depolarization Field in Ultrathin Ferroelectric BaTiO3_3 Capacitors

    Full text link
    Time-dependent polarization relaxation behaviors induced by a depolarization field EdE_{d} were investigated on high-quality ultrathin SrRuO3_{3}/BaTiO3_{3}/SrRuO3_{3} capacitors. The EdE_d values were determined experimentally from an applied external field to stop the net polarization relaxation. These values agree with those from the electrostatic calculations, demonstrating that a large EdE_{d} inside the ultrathin ferroelectric layer could cause severe polarization relaxation. For numerous ferroelectric devices of capacitor configuration, this effect will set a stricter size limit than the critical thickness issue
    • …
    corecore